Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A

Rheumatology (Oxford). 2019 Mar 25:kez085. doi: 10.1093/rheumatology/kez085. Online ahead of print.

Abstract

Objectives: DM and PM are characterized by myofibre damage with inflammatory cell infiltration due to the strong expressions of MHC class I HLA-A and monocyte chemoattractant protein-1 (MCP-1). Dysferlin (DYSF) is a transmembrane glycoprotein that anchors in the sarcolemma of myofibres. DYSF mutation is closely associated with inherited myopathies. This study aimed to determine the role of DYSF in the development of DM/PM.

Methods: Mass spectrometry was performed in muscle tissues from DM/PM patients and controls. The DYSF levels in muscle tissue, peripheral blood cells and serum were detected by Western blotting, IF, flow cytometry or ELISA. Double IF and co-immunoprecipitation were used to investigate the relationship between DYSF and HLA-A.

Results: Mass spectrometry and bioinformatics analysis findings suggested the dysregulated proteins in DM/PM patients participated in common biological processes and pathways, such as the generation of precursor metabolites and energy. DYSF was upregulated in the muscle tissue and serum of DM/PM patients. DYSF was mainly expressed in myofibres and co-localized with HLA-A and MCP-1. DYSF and HLA-A expressions were elevated in myocytes and endothelial cells after being stimulated by patient serum and IFN-β. However, no direct interactions were found between DYSF and HLA-A by co-immunoprecipitation.

Conclusion: Our study revealed the dysregulated proteins involved in common and specific biological processes in DM/PM patient samples. DYSF is upregulated and exhibits a potential role along with that of HLA-A and MCP-1 in inflammatory cell infiltration and muscle damage during the development of DM/PM.

Keywords: DYSF; HLA-A; dermatomyositis; polymyositis; protein profiles.