Mechanobiological Mechanisms of Load-Induced Osteoarthritis in the Mouse Knee

J Biomech Eng. 2019 Jul 1;141(7):0708061-07080610. doi: 10.1115/1.4043970.

Abstract

Osteoarthritis (OA) is a degenerative joint disease that affects millions of people worldwide, yet its disease mechanism is not clearly understood. Animal models have been established to study disease progression by initiating OA through modified joint mechanics or altered biological activity within the joint. However, animal models often do not have the capability to directly relate the mechanical environment to joint damage. This review focuses on a novel in vivo approach based on controlled, cyclic tibial compression to induce OA in the mouse knee. First, we discuss the development of the load-induced OA model, its different loading configurations, and other techniques used by research laboratories around the world. Next, we review the lessons learned regarding the mechanobiological mechanisms of load-induced OA and relate these findings to the current understanding of the disease. Then, we discuss the role of specific genetic and cellular pathways involved in load-induced OA progression and the contribution of altered tissue properties to the joint response to mechanical loading. Finally, we propose using this approach to test the therapeutic efficacy of novel treatment strategies for OA. Ultimately, elucidating the mechanobiological mechanisms of load-induced OA will aid in developing targeted treatments for this disabling disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Disease Models, Animal*
  • Mechanical Phenomena*
  • Mice
  • Osteoarthritis / physiopathology*
  • Rhombencephalon / physiopathology*
  • Weight-Bearing