Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma

Nat Mater. 2019 Nov;18(11):1252-1263. doi: 10.1038/s41563-019-0425-1. Epub 2019 Jul 22.

Abstract

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation*
  • Cell Line, Tumor
  • Cell Movement*
  • Cell Proliferation
  • ErbB Receptors / metabolism
  • Humans
  • Kinetics
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • rab5 GTP-Binding Proteins / metabolism

Substances

  • EGFR protein, human
  • ErbB Receptors
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • rab5 GTP-Binding Proteins