De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues

J Biol Chem. 2019 Sep 6;294(36):13464-13477. doi: 10.1074/jbc.RA119.008743. Epub 2019 Jul 23.

Abstract

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.

Keywords: dynamic compartmentation; ex vivo human lung tissue slice cultures; lung cancer; metabolic tracer; metabolism; multiplexed Stable Isotope-resolved Metabolomics (mSIRM); nucleoside/nucleotide biosynthesis; one-carbon metabolism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Cell Proliferation
  • Glycine / biosynthesis*
  • Humans
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Metabolomics
  • Purine Nucleotides / biosynthesis*
  • Serine / biosynthesis*

Substances

  • Purine Nucleotides
  • Serine
  • Glycine