Dynamics phenotyping across length and time scales in collective cell migration

Semin Cell Dev Biol. 2019 Sep:93:69-76. doi: 10.1016/j.semcdb.2018.10.010. Epub 2018 Oct 31.

Abstract

Processes in collective migration span many length and time scales. In this review, we focus on length scales ranging from tens of microns (single cells) to a few millimeters (cell clusters) and the motion of these cells and cell groups on time scales of minutes to hours. We focus on epithelial cell sheets and metrics of motion developed to measure migration phenotypes in this system. Comparisons between cell motion and fluid flows, facilitated by the popular image analysis technique particle image velocimetry, yield metrics that can be used to study migration across a range of length and time scales. Measuring collective cell migration across these scales provides a complex, quantitative phenotype useful for migration models, in particular those that compare and contrast collective cell migration to movement of particles near a transition to jamming. Contrasting the motion of epithelial cells and the jamming transition illustrates aspects of collective motion that can be attributed to the jammed character of cell clusters, and highlights aspects of collective behavior that likely involve active motility and cell-cell guidance. The application of multiple migration metrics, which span multiple scales of the system, thus allows us to link cell-scale signals and mechanics to collective behavior.

Keywords: Cell migration; Collective dynamics; Particle image velocimetry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Cell Movement*
  • Humans
  • Phenotype*
  • Time Factors