Form and magnetic birefringence in undulated Permalloy/PET films

Opt Express. 2019 Jul 22;27(15):21285-21294. doi: 10.1364/OE.27.021285.

Abstract

We report the measurement of form and magnetic birefringence in Permalloy (Ni80Fe20) films grown on rippled Poly(Ethylene Terephthalate), PET, substrates. Prior to Permalloy deposition, Laser Induced Periodic Surface Structures (LIPSS) were generated on the polymeric substrate by a nanosecond laser beam, developing an ordered rippled nanostructure. Due to their high transparency factor, we could investigate the behavior of linear polarized light transmitting at normal incidence on Permalloy/PET sample. The results show the existence of an optical axis parallel to the ripples direction, which yields an strong form birefringence effect arising from the laser patterning. Concerning the Permalloy thin film, the study of its in-plane magnetization was carried out measuring the Voigt magnetooptical effect. The obtained data in our samples reveal the appearance of two different mechanisms to reverse the magnetization, as the external magnetic field is parallel or perpendicular to the ripples direction. Accordingly, the transmitted light shows a magnetic birefringence depending on the relative orientation between the ripple direction, i.e. the optical axis of the LIPSS, and the in-plane magnetization of the Permalloy film.