Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice

Gene Ther. 2020 Feb;27(1-2):74-84. doi: 10.1038/s41434-019-0113-4. Epub 2019 Dec 11.

Abstract

Mucopolysaccharidosis type I (MPS I) is caused by deficiency of alpha-L-iduronidase (IDUA), leading to multisystemic accumulation of glycosaminoglycans (GAG). Untreated MPS I patients may die in the first decades of life, mostly due to cardiovascular and respiratory complications. We previously reported that the treatment of newborn MPS I mice with intravenous administration of lipossomal CRISPR/Cas9 complexes carrying the murine Idua gene aiming at the ROSA26 locus resulted in long-lasting IDUA activity and GAG reduction in various tissues. Following this, the present study reports the effects of gene editing in cardiovascular, respiratory, bone, and neurologic functions in MPS I mice. Bone morphology, specifically the width of zygomatic and femoral bones, showed partial improvement. Although heart valves were still thickened, cardiac mass and aortic elastin breaks were reduced, with normalization of aortic diameter. Pulmonary resistance was normalized, suggesting improvement in respiratory function. In contrast, behavioral abnormalities and neuroinflammation still persisted, suggesting deterioration of the neurological functions. The set of results shows that gene editing performed in newborn animals improved some manifestations of the MPS I disorder in bone, respiratory, and cardiovascular systems. However, further studies will be imperative to find better delivery strategies to reach "hard-to-treat" tissues to ensure better systemic and neurological effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Bone Diseases / genetics
  • CRISPR-Cas Systems / genetics
  • Cardiovascular System / metabolism
  • Clustered Regularly Interspaced Short Palindromic Repeats / genetics
  • Disease Models, Animal
  • Female
  • Gene Editing / methods
  • Genetic Therapy / methods
  • Glycosaminoglycans / metabolism
  • Iduronidase / genetics*
  • Iduronidase / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mucopolysaccharidosis I / genetics
  • Mucopolysaccharidosis I / physiopathology
  • Mucopolysaccharidosis I / therapy*
  • Phenotype
  • RNA, Untranslated / genetics*
  • RNA, Untranslated / metabolism

Substances

  • Glycosaminoglycans
  • Gt(ROSA)26Sor non-coding RNA, mouse
  • RNA, Untranslated
  • Iduronidase