A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα

Cell Death Dis. 2020 Feb 6;11(2):96. doi: 10.1038/s41419-020-2296-4.

Abstract

Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism*
  • Animals
  • Anti-Inflammatory Agents / pharmacology
  • Antimicrobial Cationic Peptides / genetics
  • Antimicrobial Cationic Peptides / metabolism
  • Antimicrobial Cationic Peptides / pharmacology*
  • Antioxidants / pharmacology
  • Cathelicidins
  • Disease Models, Animal
  • Hypertrophy, Left Ventricular / enzymology
  • Hypertrophy, Left Ventricular / genetics
  • Hypertrophy, Left Ventricular / physiopathology
  • Hypertrophy, Left Ventricular / prevention & control*
  • Male
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocardium / enzymology*
  • Myocardium / pathology
  • Oxidative Stress / drug effects
  • Phosphatidylinositol 3-Kinase / metabolism*
  • Proto-Oncogene Proteins c-akt / deficiency
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA Interference
  • Receptor, IGF Type 1 / metabolism*
  • Signal Transduction
  • Toll-Like Receptor 9 / deficiency
  • Toll-Like Receptor 9 / genetics
  • Toll-Like Receptor 9 / metabolism*
  • Ventricular Function, Left / drug effects
  • Ventricular Remodeling / drug effects

Substances

  • Anti-Inflammatory Agents
  • Antimicrobial Cationic Peptides
  • Antioxidants
  • Igf1r protein, mouse
  • Tlr9 protein, mouse
  • Toll-Like Receptor 9
  • Phosphatidylinositol 3-Kinase
  • Receptor, IGF Type 1
  • Akt1 protein, mouse
  • Proto-Oncogene Proteins c-akt
  • AMP-Activated Protein Kinases
  • Cathelicidins