Impaired Metabolomics of Sulfur-Containing Substances in Rats Acutely Treated with Carbon Tetrachloride

Toxicol Res. 2008 Dec;24(4):281-287. doi: 10.5487/TR.2008.24.4.281. Epub 2008 Dec 1.

Abstract

Impairment of hepatic metabolism of sulfur-containing amino acids has been known to be linked with induction of liver injury. We determined the early changes in the transsulfuration reactions in liver of rats challenged with a toxic dose of CCl4 (2 mmol/kg, ip). Both hepatic methionine concentration and methionine adenosyltransferase activity were increased, but S-adenosylmethionine level did not change. Hepatic cysteine was increased significantly from 4 h after CCl4 treatment. Glutathione (GSH) concentration in liver was elevated in 4~8 h and then returned to normal in accordance with the changes in glutamate cysteine ligase activity. Cysteine dioxygenase activity and hypotaurine concentration were also elevated from 4 h after the treatment. However, plasma GSH concentration was increased progressively, reaching a level at least several fold greater than normal in 24 h. γ-Glutamyltransferase activity in kidney or liver was not altered by CCl4, suggesting that the increase in plasma GSH could not be attributed to a failure of GSH cycling. The results indicate that acute liver injury induced by CCl4 is accompanied with extensive alterations in the metabolomics of sulfur-containing amino acids and related substances. The major metabolites and products of the transsul-furation pathway, including methionine, cysteine, hypotaurine, and GSH, are all increased in liver and plasma. The physiological significance of the change in the metabolomics of sulfur-containing substances and its role in the induction of liver injury need to be explored in future studies.

Keywords: Carbon tetrachloride; Glutathione; S-adenosylmethionine; Taurine; Transsulfuration.