Comparative proteomic analysis of protein methylation provides insight into the resistance of hepatocellular carcinoma to 5-fluorouracil

J Proteomics. 2020 May 15:219:103738. doi: 10.1016/j.jprot.2020.103738. Epub 2020 Mar 18.

Abstract

Protein methylation is one of the common post-translational modifications involved in diverse biological processes including signal transduction, transcriptional regulation, DNA repairing, gene activation, gene repression, and RNA processing. Due to technique limitation, the investigation of protein methylation in cancer cells is not well achieved, which hinders our understanding of the contribution of protein methylation to drug resistance. In this study, we analyzed the methylproteomes of both 5-fluorouracil (5-Fu) resistant Bel/5-Fu cell line and its parental Bel cell line by employing SPE-SCX based label-free quantitative proteomics. We identified 313 methylation forms on 294 sites in Bel cells and 294 methylation forms on 260 sites in Bel/5-Fu cells with high localization confidence. In addition, we quantified 251 methylation forms and found that 77 methylation forms significantly changed. After normalizing with the protein abundance, the 89 methylation forms were determined with the significant changes in site stoichiometry. The sequence characteristics of these significantly changed methylation sites are different. Gene ontology analysis showed that these significantly changed methylated proteins mainly involved in the biological processes of translation and transcription. Together, our findings indicated that protein methylation occurring in hepatocellular carcinoma might play a critical role in requiring drug resistance. SIGNIFICANCE: The drug resistance acquired in cancer cells has been considered as a major challenge for the cancer treatment. Due to complexity, the molecular mechanisms are still largely unknown. Identifying the key markers will improve our understanding of the mechanisms and is crucial for the development of new therapeutic strategies to overcome resistance. To date, increasing number of proteomics and phosphoproteomics studies were reported to investigate the mechanisms of drug resistance. However, the methylproteomics studies related to drug resistance were not reported yet. Here, we performed the SPE-SCX based label-free quantitative proteomics to analyze the methylproteomes of both resistant cell line Bel/5-Fu and sensitive cell line Bel. Through the qualitative and quantitative analysis, we found that the sequence characteristics of methylation sites were evidently different between these two cell lines. The results suggested that some methyltransferases might play a crucial role in the regulation of drug resistance. We also performed the analysis of methyl-site stoichiometry by normalizing the protein abundances. It was found that 89 methylation forms were determined with the significant changes in site stoichiometry, which may contribute to the development of the Bel cells into resistant cells. Our methylproteomes dataset would be useful to reveal novel molecular mechanisms of drug resistance acquired in hepatocellular carcinoma.

Keywords: 5-Fu resistance; Heavy methyl SILAC; Hepatocellular carcinoma; Mass spectrometry; Methylproteome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Fluorouracil / pharmacology
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Methylation
  • Protein Processing, Post-Translational
  • Proteomics

Substances

  • Fluorouracil