Using metal-ligand interactions to access biomimetic supramolecular polymers with adaptive and superb mechanical properties

J Mater Chem B. 2013 Oct 7;1(37):4809-4818. doi: 10.1039/c3tb20647e. Epub 2013 Aug 14.

Abstract

The development of polymer materials that exhibit excellent mechanical properties and can respond to environmental stimuli is of great scientific and commercial interest. In this work, we report a series of biomimetic supramolecular polymers using a ligand macromolecule carrying multiple tridentate ligand 2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) units synthesized via CuAAC in the polymer backbone together with transition and/or lanthanide metal salts. The metal-ligand complexes phase separate from soft linker segments, acting as physical crosslinking points in the materials. The metallo-supramolecular films exhibit superb mechanical properties, i.e., high tensile strength (up to 18 MPa), large strain at break (>1000%) and exceptionally high toughness (up to 70 MPa), which are much higher than those of the ligand macromolecule and are tunable by adjusting the stoichiometric ratio of Zn2+ to Eu3+ and the stoichiometry of metal ion to ligand. The metal-ligand hard phase domains are demonstrated to be thermally stable but mechanically labile, similar to the behaviors of covalent mechanophores. The thermal stability and mechanical responsiveness are also dependent on the compositions of metal ions. The disruption of the hard phase domains and the dissociation of metal-ligand complexes under stretching are similar to the unfolding of modular domains in modular biomacromolecules and are responsible for the superb mechanical properties. In addition, the biomimetic metallo-supramolecular materials display promising responsive properties to UV irradiation and chemicals. These well designed, created and characterized robust structures will inspire further accurate tailoring of biomimetic responsive materials at the molecular level and/or nanoscale.