Ca2+ dependency of limb muscle fiber contractile mechanics in young and older adults

Am J Physiol Cell Physiol. 2020 Jun 1;318(6):C1238-C1251. doi: 10.1152/ajpcell.00575.2019. Epub 2020 Apr 29.

Abstract

Age-induced declines in skeletal muscle contractile function have been attributed to multiple cellular factors, including lower peak force (Po), decreased Ca2+ sensitivity, and reduced shortening velocity (Vo). However, changes in these cellular properties with aging remain unresolved, especially in older women, and the effect of submaximal Ca2+ on contractile function is unknown. Thus, we compared contractile properties of muscle fibers from 19 young (24 ± 3 yr; 8 women) and 21 older adults (77 ± 7 yr; 7 women) under maximal and submaximal Ca2+ and assessed the abundance of three proteins thought to influence Ca2+ sensitivity. Fast fiber cross-sectional area was ~44% larger in young (6,479 ± 2,487 µm2) compared with older adults (4,503 ± 2,071 µm2, P < 0.001), which corresponded with a greater absolute Po (young = 1.12 ± 0.43 mN; old = 0.79 ± 0.33 mN, P < 0.001). There were no differences in fast fiber size-specific Po, indicating the age-related decline in force was explained by differences in fiber size. Except for fast fiber size and absolute Po, no age or sex differences were observed in Ca2+ sensitivity, rate of force development (ktr), or Vo in either slow or fast fibers. Submaximal Ca2+ depressed ktr and Vo, but the effects were not altered by age in either sex. Contrary to rodent studies, regulatory light chain (RLC) and myosin binding protein-C abundance and RLC phosphorylation were unaltered by age or sex. These data suggest the age-associated reductions in contractile function are primarily due to the atrophy of fast fibers and that caution is warranted when extending results from rodent studies to humans.

Keywords: aging; calcium; contractile properties; skeletal muscle fibers.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Aged, 80 and over
  • Aging / metabolism*
  • Calcium / metabolism*
  • Calcium Signaling*
  • Carrier Proteins / metabolism
  • Female
  • Humans
  • Male
  • Muscle Contraction*
  • Muscle Fibers, Skeletal / metabolism*
  • Muscle Strength*
  • Myosin Heavy Chains / metabolism
  • Myosin Light Chains / metabolism
  • Quadriceps Muscle / metabolism*
  • Sex Factors
  • Time Factors
  • Young Adult

Substances

  • Carrier Proteins
  • Myosin Light Chains
  • myosin-binding protein C
  • Myosin Heavy Chains
  • Calcium