Low-Loss Organic Hyperbolic Materials in the Visible Spectral Range: A Joint Experimental and First-Principles Study

Adv Mater. 2020 Jul;32(28):e2002387. doi: 10.1002/adma.202002387. Epub 2020 Jun 3.

Abstract

Hyperbolic media strengthen numerous attractive applications in optics such as super-resolution imaging, enhanced spontaneous emission, and nanoscale waveguiding. Natural hyperbolic materials exist at visible frequencies; however, implementations of these materials suffer substantial compromises resulting from the high loss in the currently available candidates. Here, the first experimental and theoretical investigation of regioregular poly(3-alkylthiophenes) (rr-P3ATs), a naturally low-loss organic hyperbolic material (OHM) in the visible frequency range, is shown. These hyperbolic properties arise from a highly ordered structure of layered electron-rich conjugated thiophene ring backbones separated by insulating alkyl side chains. The optical and electronic properties of the rr-P3AT can be tuned by controlling the degree of crystallinity and alkyl side chain length. First-principles calculations support the experimental observations, which result from the rr-P3AT's structural and optical anisotropy. Conveniently, rr-P3AT-based OHMs are facile to fabricate, flexible, and biocompatible, which may lead to tremendous new opportunities in a wide range of applications.

Keywords: low-loss materials; metamaterials; organic hyperbolic materials; poly(3-alkylthiophenes).