Genetic reduction of cilium length by targeting intraflagellar transport 88 protein impedes kidney and liver cyst formation in mouse models of autosomal polycystic kidney disease

Kidney Int. 2020 Nov;98(5):1225-1241. doi: 10.1016/j.kint.2020.05.049. Epub 2020 Jun 28.

Abstract

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed β-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate β-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.

Keywords: Pkd1 knockout; Pkd2.Ift88 double knockout; cystogenesis; primary cilia; β-catenin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cilia
  • Cysts* / genetics
  • Humans
  • Kidney
  • Liver
  • Mice
  • Mice, Knockout
  • Polycystic Kidney Diseases*
  • Polycystic Kidney, Autosomal Dominant* / genetics
  • TRPP Cation Channels / genetics

Substances

  • TRPP Cation Channels