High-Throughput Screening: today's biochemical and cell-based approaches

Drug Discov Today. 2020 Oct;25(10):1807-1821. doi: 10.1016/j.drudis.2020.07.024. Epub 2020 Aug 12.

Abstract

High-throughput screening (HTS) provides starting chemical matter in the adventure of developing a new drug. In this review, we survey several HTS methods used today for hit identification, organized in two main flavors: biochemical and cell-based assays. Biochemical assays discussed include fluorescence polarization and anisotropy, FRET, TR-FRET, and fluorescence lifetime analysis. Binding-based methods are also surveyed, including NMR, SPR, mass spectrometry, and DSF. On the other hand, cell-based assays discussed include viability, reporter gene, second messenger, and high-throughput microscopy assays. We devote some emphasis to high-content screening, which is becoming very popular. An advisable stage after hit discovery using phenotypic screens is target deconvolution, and we provide an overview of current chemical proteomics, in silico, and chemical genetics tools. Emphasis is made on recent CRISPR/dCas-based screens. Lastly, we illustrate some of the considerations that inform the choice of HTS methods and point to some areas with potential interest for future research.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Computer Simulation
  • Drug Development / methods*
  • Drug Discovery / methods*
  • Fluorescence Polarization
  • Fluorescence Resonance Energy Transfer
  • High-Throughput Screening Assays / methods*
  • Humans
  • Microscopy / methods