13-Plex UHPLC-MS/MS Analysis of Hexanal and Heptanal Using Multiplex Tags Chemical Isotope Labeling Technology

J Am Soc Mass Spectrom. 2020 Sep 2;31(9):1965-1973. doi: 10.1021/jasms.0c00222. Epub 2020 Aug 25.

Abstract

In this work, a new series of chemical isotope labeling reagents, levofloxacin-hydrazide-based mass tags (LHMTs) named as LHMT359/360/361/362/363/364/365/366/373/375/376/378/379/381 were first designed and synthesized for the high-throughput analysis of potential biomarkers containing hexanal and heptanal of lung cancer. We exploited a new core structure of levofloxacin-d3, which significantly enhanced the multiplexing capability. Among them, LHMT359 was used for labeling standard compounds as internal standards for quantification. Using LHMT373-heptanal as dummy template, dummy magnetic molecularly imprinted polymers (DMMIPs) were prepared for magnetic dispersive solid-phase extraction after derivatization procedure. Other 12 LHMTs were established for high-throughput labeling hexanal and heptanal in human serum samples. The presynthesized DMMIPs can selectively extract LHMTs-derivatives of hexanal and heptanal from equally mixed derivatization solutions. The enriched derivatives of hexanal and heptanal were quantified by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A single UHPLC-MS/MS run enabled simultaneously quantifying hexanal and heptanal from 12 serum samples only within 2 min. The limits of detection were all 0.5 pM for hexanal and heptanal. The accuracies from human serum samples ranged from -10.2% to +11.0% with the intra- and interday precisions less than 11.3%. Meanwhile, this method was successfully applied for the analysis of hexanal and heptanal in serum samples from healthy people and lung cancer patients. The results show that this method has the significant advantages of high sensitivity, accuracy, selectivity, and analysis-throughput. The method application indicates that the developed method is promising in the screening of suspected lung cancer patients.

Keywords: aldehydes; chemical isotope labeling; liquid chromatography tandem mass spectrometry; lung cancer biomarkers; magnetic molecularly imprinted polymers; multiplex mass tags.