A nicotine-induced positive feedback loop between HIF1A and YAP1 contributes to epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma

J Exp Clin Cancer Res. 2020 Sep 7;39(1):181. doi: 10.1186/s13046-020-01689-6.

Abstract

Background: Nicotine, an active ingredient in tobacco, can promote epithelial-to-mesenchymal transition (EMT) processes that enhance the aggressiveness of a number of human cancers. In the present study, we investigated whether cigarette smoke/nicotine drives EMT in pancreatic ductal adenocarcinoma (PDAC).

Methods: Quantitative real-time PCR, western blot, immunohistochemistry, and immunofluorescence assays were used to evaluate Yes-associated protein 1 (YAP1) expression associated with cigarette smoking in human PDAC tissue samples and with nicotine exposure in PDAC cell lines. Bioinformatics, loss- and gain- of- function experiments, luciferase reporter assays, chromatin immunoprecipitation (ChIP), and murine tumor xenograft models were performed to examine the function of YAP1 in PDAC and to identify potential mechanisms of action.

Results: Exposure to smoking or nicotine promoted EMT and tumor growth in PDAC cells and in xenograft tumors. Functional studies revealed that YAP1 might drive nicotine-stimulated EMT and oncogenic activity in vitro and in vivo. In human PDAC tissues, upregulation of YAP1 was associated with "ever smoking" status and poor overall survival. In term of mechanism, hypoxia inducible factor (HIF)1A promoted YAP1 nuclear localization and YAP1 transactivation by directly binding to the hypoxia responsive elements of the YAP1 promoter upon nicotine treatment. Nicotine stimulated HIF1A and YAP1 expression by activating cholinergic receptor nicotinic alpha7 (CHRNA7). In addition, YAP1 increased and sustained the protein stability of HIF1A.

Conclusions: These data demonstrate that YAP1 enhances nicotine-stimulated EMT and tumor progression of PDAC through a HIF1A/YAP1 positive feedback loop. Developing inhibitors that specifically target YAP1 may provide a novel therapeutic approach to suppress PDAC growth, especially in PDAC patients who have a history of smoking.

Keywords: Epithelial-to-mesenchymal transition; HIF1A; Nicotine; Pancreatic ductal adenocarcinoma; YAP1.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Pancreatic Ductal / drug therapy
  • Carcinoma, Pancreatic Ductal / metabolism
  • Carcinoma, Pancreatic Ductal / pathology*
  • Cell Movement
  • Cell Proliferation
  • Epithelial-Mesenchymal Transition
  • Feedback, Physiological*
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Nicotine / pharmacology*
  • Nicotinic Agonists / pharmacology
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Prognosis
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays
  • YAP-Signaling Proteins

Substances

  • Adaptor Proteins, Signal Transducing
  • Biomarkers, Tumor
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Nicotinic Agonists
  • Transcription Factors
  • YAP-Signaling Proteins
  • YAP1 protein, human
  • Nicotine