Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy

Cancer Discov. 2021 Feb;11(2):384-407. doi: 10.1158/2159-8290.CD-20-0818. Epub 2020 Nov 6.

Abstract

Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of Trp53, Brca1, Pten, and Nf1 and overexpression of Myc and Trp53 R172H, which was contrasted with an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of Trp53 and overexpression of Ccne1, Akt2, and Trp53 R172H, and driven by KRAS G12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC. SIGNIFICANCE: We engineered a panel of murine fallopian tube epithelial cells bearing mutations typical of HGSC and capable of forming tumors in syngeneic immunocompetent hosts. These models recapitulate tumor microenvironments and drug responses characteristic of human disease. In a Ccne1-overexpressing model, immune-checkpoint resistance was driven by follistatin.This article is highlighted in the In This Issue feature, p. 211.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cystadenocarcinoma, Serous / drug therapy*
  • Cystadenocarcinoma, Serous / genetics
  • Disease Models, Animal*
  • Drug Therapy, Combination
  • Fallopian Tube Neoplasms / drug therapy*
  • Fallopian Tube Neoplasms / genetics
  • Female
  • Immune Checkpoint Inhibitors / therapeutic use*
  • Mice, Transgenic
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / genetics

Substances

  • Immune Checkpoint Inhibitors