The Inclusion of a Matrix Metalloproteinase-9 Responsive Sequence in Self-assembled Peptide-based Brain-Targeting Nanoparticles Improves the Efficiency of Nanoparticles Crossing the Blood-Brain Barrier at Elevated MMP-9 Levels

J Pharm Sci. 2021 Mar;110(3):1349-1364. doi: 10.1016/j.xphs.2020.12.004. Epub 2020 Dec 15.

Abstract

This study investigated whether the inclusion of a matrix metalloproteinase-9 (MMP-9) responsive sequence in self-assembled peptide-based brain-targeting nanoparticles (NPs) would enhance the blood-brain barrier (BBB) penetration when MMP-9 levels are elevated both in the brain and blood circulation. Brain-targeting peptides were conjugated at the N-terminus to MMP-9-responsive peptides, and these were conjugated at the N-terminus to lipid moiety (cholesteryl chloroformate or palmitic acid). Two constructs did not have MMP-9-responsive peptides. NPs were characterised for size, charge, critical micelle concentration, toxicity, blood compatibility, neural cell uptake, release profiles, and in vitro BBB permeability simulating normal or elevated MMP-9 levels. The inclusion of MMP-9-sensitive sequences did not improve the release of a model drug in the presence of active MMP-9 from NPs compared to distilled water. 19F NMR studies suggested the burial of MMP-9-sensitive sequences inside the NPs making them inaccessible to MMP-9. Only cholesterol-GGGCKAPETALC (responsive to MMP-9) NPs showed <5% haemolysis, <1 pg/mL release of IL-1β at 500 μg/mL from THP1 cells, with 70.75 ± 5.78% of NPs crossing the BBB at 24 h in presence of active MMP-9. In conclusion, brain-targeting NPs showed higher transport across the BBB model when MMP-9 levels were elevated and the brain-targeting ligand was responsive to MMP-9.

Keywords: BBB model; Brain drug delivery; MMP-9; Peptides; Personalised medicine; Self-assembled nanoparticles.

MeSH terms

  • Blood-Brain Barrier*
  • Matrix Metalloproteinase 9
  • Micelles
  • Nanoparticles*
  • Peptides

Substances

  • Micelles
  • Peptides
  • Matrix Metalloproteinase 9