The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity

J Neurophysiol. 1988 Jan;59(1):19-40. doi: 10.1152/jn.1988.59.1.19.

Abstract

1. Purkinje cell activity was recorded from lobules VI and VII of the cerebellar vermis during the performance of visuooculomotor tasks designed to dissociate the signals related to head, smooth-pursuit eye, and retinal image movements. Task-related modulations in the simple spike discharge rates of 157 cells were observed in three alert monkeys. 2. Of 65 Purkinje cells that were completely tested for all three signals, all exhibited smooth-pursuit eye movement-related activity. An additional vestibular or visual response was observed in 17 and 11% of the cells, respectively. Eye, head, and retinal image velocity signals were all recorded in the same unit in 52% of the Purkinje cells. The responses of 5% of the fully tested cells were associated with changes in the direction of eye, head, and retinal image movement. 3. The observed sensorioculomotor responses were direction selective in 98% of the Purkinje cells. For the Purkinje cells that were fully tested, 60% of the cells exhibited peak discharge rates for ipsilateral and 40% for contralateral eye velocity. Of these Purkinje cells, 45% exhibited eye, head, and retinal image velocity signals with equivalent direction preferences. 4. Of 42 Purkinje cells tested, 88% demonstrated some kinds of interactive responses during combined eye and sensory stimulation. The interaction of eye and head velocity signals has been discussed in a companion paper (38). The modulation in discharge rate observed during tracking in the presence of a random dot background pattern could be predicted from the dissociated responses to smooth pursuit in the dark and to movements of the background pattern during suppression of eye movements. 5. The sensitivity to smooth-pursuit eye velocity averaged 1.4 times the sensitivity to head velocity. In 80% of the Purkinje cells, however, the sensitivity to eye velocity exceeded the sensitivity to head velocity by an average of only 10%. The sensitivity to smooth-pursuit eye velocity averaged 1.6 times the sensitivity to retinal image velocity. 6. An increase in Purkinje cell discharge rate was observed during the open-loop period of the initiation of smooth-pursuit eye movements. This open-loop response was consistent with the presence of a visual signal during ocular pursuit, since these cells were also shown to be responsive to a dissociated retinal image velocity signal. Furthermore, the magnitude of the open-loop response indicated an enhancement of the sensitivity to retinal image velocity when visual information became behaviorally significant.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cerebellum / physiology*
  • Eye Movements*
  • Head
  • Macaca fascicularis
  • Movement
  • Purkinje Cells / physiology*
  • Retina / physiology
  • Saccades