Zn2+-Depletion Enhances Lysosome Fission in Cultured Rat Embryonic Cortical Neurons Revealed by a Modified Epifluorescence Microscopic Technique

Microsc Microanal. 2021 Apr;27(2):420-424. doi: 10.1017/S1431927620024940.

Abstract

Lysosomes are integration hubs for several signaling pathways, such as autophagy and endocytosis, and also crucial stores of ions, including Zn2+. Lysosomal dysfunction caused by changes in their morphology by fusion and fission processes can result in several pathological disorders. However, the role of Zn2+ in modulating the morphology of lysosomes is unclear. The resolution of conventional epifluorescence microscopy restricts accurate observation of morphological changes of subcellular fluorescence punctum. In this study, we used a modified epifluorescence microscopy to identify the center of a punctum from a series of z-stack images and calculate the morphological changes. We stained primary cultured rat embryonic cortical neurons with FluoZin3, a Zn2+-sensitive fluorescent dye, and Lysotracker, a lysosome-specific marker, to visualize the distribution of Zn2+-enriched vesicles and lysosomes, respectively. Our results revealed that treating neurons with N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine, a cell-permeable Zn2+ chelator, shrank Zn2+-enriched vesicles and lysosomes by up to 25% in an hour. Pretreating the neurons with YM201636, a blocker of lysosome fission, could suppress this shrinkage. These results demonstrate the usefulness of the modified epifluorescence microscopy for investigating the homeostasis of intracellular organelles and related disorders.

Keywords: YM201636; Zn2+ homeostasis; autophagosome; lysosome homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy
  • Cells, Cultured
  • Lysosomes*
  • Neurons*
  • Rats
  • Zinc

Substances

  • Zinc