Understanding the binding affinities between SFRP1 CRD, SFRP1 Netrin, Wnt 5B and frizzled receptors 2, 3 and 7 using MD simulations

J Biomol Struct Dyn. 2022 Sep;40(15):6831-6844. doi: 10.1080/07391102.2021.1890219. Epub 2021 Mar 5.

Abstract

cWnt-signalling plays a crucial role in stem cell maintenance and tissue homeostasis. Secreted frizzled-related proteins(SFRP), Wnt inhibitors consist of the N-terminal cysteine rich domain(CRD) and the C-terminal netrin(NTR) domain. SFRP1 binds to the Wnt ligands and frizzled receptors(FZ) either through its SFRP1CRD or through its SFRP1Netrin domains; however, very little is known on these binding affinities. Here, we attempted to understand the interactions and binding affinities of SFRP1-Wnt5B, SFRP1-FZ(2, 3 & 7) and Wnt5B-FZ(2, 3 & 7) that are mainly expressed in murine hair follicle stem cells. SFRP1CRD, SFRP1Netrin, Wnt5B and FZ(2, 3 & 7) structures were built using homology modelling, followed by their molecular dynamics simulations. SFRP1CRD showed lower fluctuation when in complex with FZ2, FZ3 and FZ7 and Wnt5B as compared to SFRP1Netrin using RMSF and RMSD. However, free energy showed SFRP1Netrin was energetically more stable than SFRP1CRD. SFRP1Netrin formed more number of interactions with FZ as compared to SFRP1CRD. Importantly, SFRP1Netrin favoured binding to the FZ receptors(FZ3 > FZ7 > FZ2) as compared to Wnt5B ligand. Conversely, the SFRP1CRD showed more affinity towards the Wnt5B ligand as compared to FZ receptors. Wnt5B showed the best binding affinity with FZ3 followed by SFRP1CRD and SFRP1Netrin. Therefore, SFRP1Netrin can bind to the FZ3 with higher binding affinity and may inhibit non-canonical Wnt-signalling pathway. Our study provides the comprehensive information on the binding affinities among the Wnt5B, SFRP1CRD/Netrin and FZ(2, 3 & 7). Thus, this information might also help in designing novel strategies to inhibit aberrant Wnt-signalling.Communicated by Ramaswamy H. Sarma.

Keywords: Wnt signalling; docking; homology modelling; molecular dynamic simulations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Frizzled Receptors* / chemistry
  • Frizzled Receptors* / metabolism
  • Ligands
  • Membrane Proteins
  • Mice
  • Netrins
  • Signal Transduction
  • Wnt Proteins* / chemistry
  • Wnt Proteins* / metabolism

Substances

  • Frizzled Receptors
  • Ligands
  • Membrane Proteins
  • Netrins
  • Sfrp1 protein, mouse
  • Wnt Proteins
  • Wnt5b protein, mouse