F5-Atlanta: A novel mutation in F5 associated with enhanced East Texas splicing and FV-short production

J Thromb Haemost. 2021 Jul;19(7):1653-1665. doi: 10.1111/jth.15314. Epub 2021 May 20.

Abstract

Background: Elucidating the molecular pathogenesis underlying East Texas bleeding disorder (ET) led to the discovery of alternatively spliced F5 transcripts harboring large deletions within exon 13. These alternatively spliced transcripts produce a shortened form of coagulation factor V (FV) in which a large portion of its B-domain is deleted. These FV isoforms bind tissue factor pathway inhibitor alpha (TFPIα) with high affinity, prolonging its circulatory half-life and enhancing its anticoagulant effects. While two missense pathogenic variants highlighted this alternative splicing event, similar internally deleted FV proteins are found in healthy controls.

Objective: We identified a novel heterozygous 832 base pair deletion within F5 exon 13, termed F5-Atlanta (F5-ATL), in a patient with severe bleeding. Our objective is to investigate the effect of this deletion on F5 and FV expression.

Methods & results: Assessment of patient plasma revealed markedly elevated levels of total and free TFPI and a FV isoform similar in size to the FV-short described in ET. Sequencing analyses of cDNA revealed the presence of a transcript alternatively spliced using the ET splice sites, thereby removing the F5-ATL deletion. This alternative splicing pattern was recapitulated by heterologous expression in mammalian cells.

Conclusions: These findings support a mechanistic model consisting of cis-acting regulatory sequences encoded within F5 exon 13 that control alternative splicing at the ET splice sites and thereby regulate circulating FV-short and TFPIα levels.

Keywords: alternative splicing; blood coagulation disorder; factor V; hemostasis; transcriptome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing
  • Animals
  • Blood Coagulation Disorders* / genetics
  • Exons
  • Factor V* / genetics
  • Humans
  • Mutation
  • RNA Splicing

Substances

  • Factor V