m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype

Nat Cell Biol. 2021 Apr;23(4):355-365. doi: 10.1038/s41556-021-00656-3. Epub 2021 Apr 1.

Abstract

Methyltransferase-like 3 (METTL3) and 14 (METTL14) are core subunits of the methyltransferase complex that catalyses messenger RNA N6-methyladenosine (m6A) modification. Despite the expanding list of m6A-dependent functions of the methyltransferase complex, the m6A-independent function of the METTL3 and METTL14 complex remains poorly understood. Here we show that genome-wide redistribution of METTL3 and METTL14 transcriptionally drives the senescence-associated secretory phenotype (SASP) in an m6A-independent manner. METTL14 is redistributed to the enhancers, whereas METTL3 is localized to the pre-existing NF-κB sites within the promoters of SASP genes during senescence. METTL3 and METTL14 are necessary for SASP. However, SASP is not regulated by m6A mRNA modification. METTL3 and METTL14 are required for both the tumour-promoting and immune-surveillance functions of senescent cells, which are mediated by SASP in vivo in mouse models. In summary, our results report an m6A-independent function of the METTL3 and METTL14 complex in transcriptionally promoting SASP during senescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine / analogs & derivatives
  • Adenosine / genetics
  • Aging / genetics*
  • Animals
  • Cellular Senescence / genetics*
  • DNA Methylation / genetics
  • Genome / genetics
  • Methyltransferases / genetics*
  • Mice
  • NF-kappa B / genetics
  • RNA, Messenger / genetics

Substances

  • NF-kappa B
  • RNA, Messenger
  • N-methyladenosine
  • Methyltransferases
  • Mettl14 protein, mouse
  • Mettl3 protein, mouse
  • Adenosine