Combined Effect of a Polygenic Risk Score and Rare Genetic Variants on Prostate Cancer Risk

Eur Urol. 2021 Aug;80(2):134-138. doi: 10.1016/j.eururo.2021.04.013. Epub 2021 May 1.

Abstract

Although prostate cancer is known to have a strong genetic basis and is influenced by both common and rare variants, the ability to investigate the combined effect of such genetic risk factors has been limited to date. We conducted an investigation of 81 094 men from the UK Biobank, including 3568 prostate cancer cases, to examine the combined effect of rare pathogenic/likely pathogenic/deleterious (P/LP/D) germline variants and common prostate cancer risk variants, measured using a polygenic risk score (PRS), on prostate cancer risk. The absolute risk of prostate cancer for HOXB13, BRCA2, ATM, and CHEK2 P/LP/D carriers ranged from 9% to 56%, and the absolute risk in noncarriers ranged from 2% to 31%, by age 85 yr, for men in the lowest and highest PRS decile, respectively. The high-penetrant HOXB13 G84E prostate cancer risk variant was most common in cases in the lowest PRS quintile (4.4%) and least common in cases in the highest PRS quintile (0.5%; p = 0.005), whereas there was no statistically significant difference in frequencies by PRS in controls. While rare and common variants strongly and distinctly influence prostate cancer onset, consideration of rare and common variants in conjunction will lead to more precise estimates of a man's lifetime risk of prostate cancer. PATIENT SUMMARY: We found that the risk of prostate cancer conveyed by rare variants could vary depending on an individual's genetic profile of common risk variants. This implies that in order to comprehensively assess genetic risk of prostate cancer, it is important to consider both rare and common variants.

Keywords: Biobank; Common variants; Exome sequencing; Genetics; Genomics; HOXB13; Polygenic risk score; Prostate cancer; Rare variants.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged, 80 and over
  • Genetic Predisposition to Disease*
  • Humans
  • Male
  • Prostatic Neoplasms* / epidemiology
  • Prostatic Neoplasms* / genetics
  • Risk Factors