The transcriptional coregulator CITED2 suppresses expression of IRS-2 and impairs insulin signaling in endothelial cells

Am J Physiol Endocrinol Metab. 2021 Aug 1;321(2):E252-E259. doi: 10.1152/ajpendo.00435.2020. Epub 2021 Jun 21.

Abstract

Endothelial cell insulin resistance contributes to the development of vascular complications in diabetes. Hypoxia-inducible factors (HIFs) modulate insulin sensitivity, and we have previously shown that a negative regulator of HIF activity, CREB-binding protein/p300 (CBP/p300) interacting transactivator-2 (CITED2), is increased in the vasculature of people with type 2 diabetes. Therefore, we examined whether CITED2 regulates endothelial insulin sensitivity. In endothelial cells isolated from mice with a "floxed" mutation in the Cited2 gene, loss of CITED2 markedly enhanced insulin-stimulated Akt phosphorylation without altering extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation. Similarly, insulin-stimulated Akt phosphorylation was increased in aortas of mice with endothelial-specific deletion of CITED2. Consistent with these observations, loss of CITED2 in endothelial cells increased insulin-stimulated endothelial nitric oxide synthase phosphorylation, Vegfa expression, and cell proliferation. Endothelial cells lacking CITED2 exhibited an increase in insulin receptor substrate (IRS)-2 protein, a key mediator of the insulin signaling cascade, whereas IRS-1 was unchanged. Conversely, overexpression of CITED2 in endothelial cells decreased IRS-2 protein by 55% without altering IRS-1, resulting in impaired insulin-stimulated Akt phosphorylation and Vegfa expression. Overexpression of HIF-2α significantly increased activity of the Irs2 promoter, and coexpression of CITED2 abolished this increase. Moreover, chromatin immunoprecipitation (ChIP) showed that loss of CITED2 increased occupancy of p300, a key component of the HIF transcriptional complex, on the Irs2 promoter. Together, these results show that CITED2 selectively inhibits endothelial insulin signaling and action through the phosphoinositide 3-kinase (PI3K)/Akt pathway via repression of HIF-dependent IRS-2 expression. CITED2 is thus a promising target to improve endothelial insulin sensitivity and prevent the vascular complications of diabetes.NEW & NOTEWORTHY Endothelial cell insulin resistance is a major contributor to the development of diabetic complications. In this study, we have shown that CITED2, a transcriptional coregulator, inhibits endothelial insulin signaling through the PI3K/Akt pathway via repression of HIF-dependent IRS-2 expression, and that deletion of CITED2 enhances insulin signaling. Thus, CITED2 represents a novel and promising target to improve insulin sensitivity in endothelial cells and prevent vascular complications in diabetes.

Keywords: endothelium; hypoxia-inducible factor; insulin resistance; insulin signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Endothelial Cells / metabolism*
  • Gene Expression Regulation
  • Insulin / metabolism*
  • Insulin Receptor Substrate Proteins / metabolism*
  • Mice
  • Repressor Proteins / metabolism*
  • Signal Transduction
  • Trans-Activators / metabolism*

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Cited2 protein, mouse
  • Insulin
  • Insulin Receptor Substrate Proteins
  • Irs2 protein, mouse
  • Repressor Proteins
  • Trans-Activators
  • endothelial PAS domain-containing protein 1

Associated data

  • figshare/10.6084/m9.figshare.14516781.v1