Central nervous system-targeted adeno-associated virus gene therapy in methylmalonic acidemia

Mol Ther Methods Clin Dev. 2021 Jun 3:21:765-776. doi: 10.1016/j.omtm.2021.04.005. eCollection 2021 Jun 11.

Abstract

Methylmalonic acidemia (MMA) is a severe metabolic disorder most commonly caused by a mutation in the methylmalonyl-CoA mutase (MMUT) gene. Patients with MMA experience multisystemic disease manifestations and remain at risk for neurological disease progression, even after liver transplantation. Therefore, delivery of MMUT to the central nervous system (CNS) may provide patients with neuroprotection and, perhaps, therapeutic benefits. To specifically target the brain, we developed a neurotropic PHP.eB vector that used a CaMKII neuro-specific promoter to restrict the expression of the MMUT transgene in the neuraxis and delivered the adeno-associated virus (AAV) to mice with MMA. The PHP.eB vector transduced cells in multiple brain regions, including the striatum, and enabled high levels of expression of MMUT in the basal ganglia. Following the CNS-specific correction of MMUT expression, disease-related metabolites methylmalonic acid and 2-methylcitrate were significantly (p < 0.02) decreased in serum of treated MMA mice. Our results show that targeting MMUT expression to the CNS using a neurotropic capsid can decrease the circulating metabolite load in MMA and further highlight the benefit of extrahepatic correction for disorders of organic acid metabolism.

Keywords: AAV; CNS; CaMKII; MMA; PHP.eB; gene therapy; methylmalonic acidemia; organic acidemia; striatum.