Circulating metabolites as a concept beyond tumor biology determining disease recurrence after resection of colorectal liver metastasis

HPB (Oxford). 2022 Jan;24(1):116-129. doi: 10.1016/j.hpb.2021.06.415. Epub 2021 Jun 24.

Abstract

Background: Micro-metastatic growth is considered the main source of early cancer recurrence. Nutritional and microenvironmental components are increasingly recognized to play a significant role in the liver. We explored the predictive potential of preoperative plasma metabolites for postoperative disease recurrence in colorectal cancer liver metastasis (CRCLM) patients.

Methods: All included patients (n = 71) had undergone R0 liver resection for colorectal cancer liver metastasis in the years between 2012 and 2018. Preoperative blood samples were collected and assessed for 180 metabolites using a preconfigured mass-spectrometry kit (Biocrates Absolute IDQ p180 kit). Postoperative disease-free (DFS) and overall survival (OS) were prospectively recorded. Patients that recurred within 6 months after surgery were defined as "high-risk" and, subsequently, a three-metabolite model was created which can assess DFS in our collective.

Results: Multiple lysophosphatidylcholines (lysoPCs) and phosphatidylcholines (PCs) significantly predicted disease recurrence within 6 months (strongest: PC aa C36:1 AUC = 0.83, p = 0.003, PC ae C34:0 AUC = 0.83, p = 0.004 and lysoPC a C18:1 AUC = 0.8, p = 0.006). High-risk patients had a median DFS of 183 days versus 522 days in low-risk population (p = 0.016, HR = 1.98 95% CI 1.16-4.35) with a 6 months recurrence rate of 47.6% versus 4.7%, outperforming routine predictors of oncological outcome.

Conclusion: Circulating metabolites identified CRCLM patients at highest risk for 6 months disease recurrence after surgery. Our data also suggests that circulating metabolites might play a significant pathophysiological role in micro-metastatic growth and concomitant early tumor recurrences after liver resection. However, the clinical applicability and performance of this proposed metabolomic concept needs to be independently validated in future studies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colorectal Neoplasms* / pathology
  • Hepatectomy / adverse effects
  • Humans
  • Liver Neoplasms*
  • Metabolomics
  • Neoplasm Recurrence, Local / surgery
  • Survival Rate