Suppressing Syndecan-1 Shedding to Protect Against Renal Ischemia/Reperfusion Injury by Maintaining Polarity of Tubular Epithelial Cells

Shock. 2022 Feb 1;57(2):256-263. doi: 10.1097/SHK.0000000000001838.

Abstract

Syndecan-1 (SDC-1), a type of heparan sulfate proteoglycan on the surface of epithelial cells, is involved in maintaining cell morphology. Loss of cell polarity constitutes the early stage of ischemic acute kidney injury (AKI). This study investigated the role of SDC-1 shedding in I/R-induced AKI and the underlying mechanisms. Levels of the shed SDC-1 in the serum were measured with ELISA 12 and 24 h after reperfusion in renal I/R model mice. Na+/K+-ATPase-α1 expression was evaluated using western blotting in vivo and immunofluorescence in hypoxia/reoxygenation (H/R) cysts. Renal tubular epithelial cell apoptosis was measured using TUNEL in vivo and flow cytometry in vitro. Furthermore, plasma syndecan-1 (pSDC-1) levels were measured in patients at the time of anesthesia resuscitation after cardiac surgery. We found that shed SDC-1 levels increased and Na+/K+-ATPase-α1 expression decreased after H/R in the three-dimensional (3D) tubular model, and this state was exacerbated with extended period of hypoxia. After the inhibition of SDC-1 shedding by GM6001, SDC-1 and Na+/K+-ATPase-α1 expression was restored, while H/R-induced apoptosis was decreased. In vivo, SDC-1 shedding was induced by renal I/R and was accompanied with a loss of renal tubular epithelial cell polarity and increased apoptosis. GM6001 pretreatment protected against I/R injury by alleviating the disruption of cell polarity and apoptosis. pSDC-1 levels were significantly higher in AKI patients than in non-AKI patients. ROC curve showed that the accuracy of pSDC-1 for AKI prediction was 0.769. In conclusion, inhibition of I/R-induced SDC-1 shedding could contribute to renal protection by restoring the loss of cell polarity and alleviating apoptosis in tubular epithelial cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Polarity*
  • Epithelial Cells / physiology*
  • Humans
  • Kidney / blood supply*
  • Mice
  • Reperfusion Injury / prevention & control*
  • Syndecan-1 / blood
  • Syndecan-1 / metabolism*

Substances

  • Syndecan-1