A mechanism for Rad53 to couple leading- and lagging-strand DNA synthesis under replication stress in budding yeast

Proc Natl Acad Sci U S A. 2021 Sep 21;118(38):e2109334118. doi: 10.1073/pnas.2109334118.

Abstract

In response to DNA replication stress, DNA replication checkpoint kinase Mec1 phosphorylates Mrc1, which in turn activates Rad53 to prevent the generation of deleterious single-stranded DNA, a process that remains poorly understood. We previously reported that lagging-strand DNA synthesis proceeds farther than leading strand in rad53-1 mutant cells defective in replication checkpoint under replication stress, resulting in the exposure of long stretches of the leading-strand templates. Here, we show that asymmetric DNA synthesis is also observed in mec1-100 and mrc1-AQ cells defective in replication checkpoint but, surprisingly, not in mrc1∆ cells in which both DNA replication and checkpoint functions of Mrc1 are missing. Furthermore, depletion of either Mrc1 or its partner, Tof1, suppresses the asymmetric DNA synthesis in rad53-1 mutant cells. Thus, the DNA replication checkpoint pathway couples leading- and lagging-strand DNA synthesis by attenuating the replication function of Mrc1-Tof1 under replication stress.

Keywords: Mrc1; Rad53; asymmetric DNA synthesis; deleterious ssDNA; replication stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Checkpoint Kinase 2 / genetics
  • Checkpoint Kinase 2 / metabolism*
  • DNA Replication / genetics
  • DNA Replication / physiology*
  • DNA, Fungal / genetics
  • Intracellular Signaling Peptides and Proteins / genetics
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Saccharomycetales / genetics
  • Saccharomycetales / metabolism

Substances

  • Cell Cycle Proteins
  • DNA, Fungal
  • Intracellular Signaling Peptides and Proteins
  • Saccharomyces cerevisiae Proteins
  • Checkpoint Kinase 2
  • Protein Serine-Threonine Kinases
  • RAD53 protein, S cerevisiae