Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy

Eur J Med Chem. 2021 Dec 15:226:113825. doi: 10.1016/j.ejmech.2021.113825. Epub 2021 Sep 4.

Abstract

Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.

Keywords: Cancer; Combination therapies; Histone deacetylases inhibitors; Histone deacetylations.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • Histone Deacetylase Inhibitors / chemistry
  • Histone Deacetylase Inhibitors / pharmacology*
  • Histone Deacetylases / metabolism*
  • Humans
  • Molecular Structure

Substances

  • Antineoplastic Agents
  • Histone Deacetylase Inhibitors
  • Histone Deacetylases