Drone-based entanglement distribution towards mobile quantum networks

Natl Sci Rev. 2020 Jan 3;7(5):921-928. doi: 10.1093/nsr/nwz227. eCollection 2020 May.

Abstract

Satellites have shown free-space quantum-communication ability; however, they are orbit-limited from full-time all-location coverage. Meanwhile, practical quantum networks require satellite constellations, which are complicated and expensive, whereas the airborne mobile quantum communication may be a practical alternative to offering full-time all-location multi-weather coverage in a cost-effective way. Here, we demonstrate the first mobile entanglement distribution based on drones, realizing multi-weather operation including daytime and rainy nights, with a Clauser-Horne-Shimony-Holt S-parameter measured to be 2.41 ± 0.14 and 2.49 ± 0.06, respectively. Such a system shows unparalleled mobility, flexibility and reconfigurability compared to the existing satellite and fiber-based quantum communication, and reveals its potential to establish a multinode quantum network, with a scalable design using symmetrical lens diameter and single-mode-fiber coupling. All key technologies have been developed to pack quantum nodes into lightweight mobile platforms for local-area coverage, and arouse further technical improvements to establish wide-area quantum networks with high-altitude mobile communication.

Keywords: daytime quantum communication; drone; entanglement distribution; mobile quantum network.