Position-Scanning Peptide Libraries as Particle Immunogens for Improving CD8+ T-Cell Responses

Adv Sci (Weinh). 2021 Dec;8(24):e2103023. doi: 10.1002/advs.202103023. Epub 2021 Oct 30.

Abstract

Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one of the eight positional libraries tested, randomized at amino acid position 5 (Pos5), shows enhanced induction of Ag-specific CD8+ T cells. A second MHC-I epitope from gp70 is assessed in the same manner and shows, in contrast, multiple positional libraries (Pos1, Pos3, Pos5, and Pos8) as well as the library mixture give rise to enhanced CD8+ T cell responses. The library mixture Pos1-3-5-8 induces a more diverse epitope-specific T-cell repertoire with superior antitumor efficacy compared to an established single mutation mimotope (AH1-A5). These data show that positional peptide libraries can serve as immunogens for improving CD8+ T-cell responses against endogenously expressed MHC-I epitopes.

Keywords: cancer; immunogen; liposomes; position-scanning peptide libraries; vaccines.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes / immunology*
  • Disease Models, Animal
  • Leukemia / immunology*
  • Lymphocyte Activation / immunology*
  • Mice
  • Mice, Inbred BALB C
  • Peptide Library*

Substances

  • Peptide Library