Pharmacological Inhibition of Mammalian Target of Rapamycin Attenuates Deoxycorticosterone Acetate Salt-Induced Hypertension and Related Pathophysiology: Regulation of Oxidative Stress, Inflammation, and Cardiovascular Hypertrophy in Male Rats

J Cardiovasc Pharmacol. 2022 Mar 1;79(3):355-367. doi: 10.1097/FJC.0000000000001187.

Abstract

The present study aimed to explore the contribution of mammalian target of rapamycin (mTOR) in deoxycorticosterone acetate (DOCA) salt-induced hypertension and related pathophysiological changes in cardiovascular and renal tissues. DOCA salt loading resulted in an increase in systolic blood pressure, diastolic blood pressure, and mean blood pressure along with the activity of ribosomal protein S6, the effector protein of mTOR. Treatment with rapamycin, the selective inhibitor of mTOR, initiated at the fourth week of DOCA- salt administration normalized the systolic blood pressure and attenuated ribosomal protein S6 activity in the heart, aorta, and kidney. Cardiac and vascular hypertrophy, oxidative stress, and infiltration of macrophages (CD68+), the marker of inflammation, were also reduced in rapamycin-treated, DOCA-salt, hypertensive rats. In addition, renal hypertrophy and dysfunction were also reduced with rapamycin-treated hypertensive rats. Moreover, these pathophysiological changes in DOCA-salt hypertensive rats were associated with increased NADPH oxidase (NOX) activity, gp91phox (formerly NOX2) expression, ERK1/2, and p38 MAPK activities in the heart, aorta, and kidney were minimized by rapamycin. These data indicate that mTOR plays an important role in regulating blood pressure and the development of cardiovascular and renal pathophysiological changes, most likely due to increased NOX expression/activity, ERK1/2, and p38 MAPK activity with macrophages infiltration in the heart, kidney, and aorta. Pharmacological inhibition of mTOR and related signaling pathways could serve as a novel target for the treatment of hypertension.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates / adverse effects
  • Animals
  • Blood Pressure
  • Desoxycorticosterone Acetate* / adverse effects
  • Hypertension* / chemically induced
  • Hypertension* / drug therapy
  • Hypertension* / metabolism
  • Hypertrophy
  • Inflammation
  • Male
  • Mammals / metabolism
  • Oxidative Stress
  • Rats
  • Ribosomal Protein S6 / metabolism
  • Sirolimus / adverse effects
  • TOR Serine-Threonine Kinases / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Acetates
  • Ribosomal Protein S6
  • Desoxycorticosterone Acetate
  • TOR Serine-Threonine Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Sirolimus