High-Performance MnO2 /Al Battery with In Situ Electrochemically Reformed Alx MnO2 Nanosphere Cathode

Small Methods. 2021 Sep;5(9):e2100491. doi: 10.1002/smtd.202100491. Epub 2021 Aug 1.

Abstract

Aqueous Al-ion battery (AAIB) is regarded as a promising candidate for large-scale energy storage systems due to its high capacity, high safety, and low cost, with MnO2 proved to be a high-performance cathode. However, the potential commercial application of this type of battery is plagued by the frequent structural collapse of MnO2 . Herein, an in situ, electrochemically reformed, urchin-like Alx MnO2 cathode is developed for water-in-salt electrolyte-based AAIBs. Benefiting from its unique α-MnO2 coated Mn2 AlO4 structure, a high Al ion storage capacity is achieved together with a high discharge voltage plateau of 1.9 V by reversible MnO2 electrolysis. Consequently, the battery exhibits a high specific capacity of 285 mAh g-1 and a high energy density of 370 Wh kg-1 at a high current density of 500 mA g-1 . Improved stability with record capacity retention is also obtained at an ultrahigh current density of 5 A g-1 after 500 cycles. Such a high-capacity and high-stability Alx MnO2 cathode would pave the way for in situ electrochemical transformation of cathode design and thus boost the practical application of AAIBs.

Keywords: AAIB; Mn 2AlO 4 phase; MnO 2/Al batteries; aqueous Al-ion batteries; “water-in-salt” electrolytes.