During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1

J Biol Chem. 2022 Feb;298(2):101570. doi: 10.1016/j.jbc.2022.101570. Epub 2022 Jan 11.

Abstract

In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.

Keywords: iron–sulfur protein; mitochondria; protein complex; protein evolution; protein–protein interactions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Carbon-Sulfur Lyases / genetics
  • Carbon-Sulfur Lyases / metabolism
  • Ferredoxins* / metabolism
  • Frataxin
  • Iron-Binding Proteins / metabolism
  • Iron-Sulfur Proteins* / metabolism
  • Mitochondrial Proteins* / metabolism
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Sulfurtransferases* / metabolism

Substances

  • Ferredoxins
  • Iron-Binding Proteins
  • Iron-Sulfur Proteins
  • Mitochondrial Proteins
  • Saccharomyces cerevisiae Proteins
  • Sulfurtransferases
  • NFS1 protein, S cerevisiae
  • Carbon-Sulfur Lyases
  • cysteine desulfurase