Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression

Cell Death Dis. 2022 Jan 24;13(1):79. doi: 10.1038/s41419-022-04520-6.

Abstract

Galectin-1 (GAL1), a β-galactoside-binding protein abundantly expressed in the tumor microenvironment, has emerged as a key mechanism of chemoresistance developed by different tumors. Although increased expression of GAL1 is a hallmark of hepatocellular carcinoma (HCC) progression, aggressiveness and metastasis, limited information is available on the role of this endogenous lectin in HCC resistance to chemotherapy. Moreover, the precise mechanisms underlying this effect are uncertain. HCC has evolved different mechanisms of resistance to chemotherapy including those involving the P-glycoprotein (P-gp), an ATP-dependent drug efflux pump, which controls intracellular drug concentration. Here, we investigated the molecular mechanism underlying GAL1-mediated chemoresistance in HCC cells, particularly the involvement of P-gp in this effect. Our results show that GAL1 protected HepG2 cells from doxorubicin (DOX)- and sorafenib-induced cell death in vitro. Accordingly, GAL1-overexpressing HepG2 cells generated DOX-resistant tumors in vivo. High expression of GAL1 in HepG2 cells reduced intracellular accumulation of DOX likely by increasing P-gp protein expression rather than altering its membrane localization. GAL1-mediated increase of P-gp expression involved activation of the phosphatidylinositol-3 kinase (PI3K) signaling pathway. Moreover, 'loss-of-function' experiments revealed that P-gp mediates GAL1-driven resistance to DOX, but not to sorafenib, in HepG2 cells. Conversely, in PLC/PRF/5 cells, P-gp protein expression was undetectable and GAL1 did not control resistance to DOX or sorafenib, supporting the critical role of P-gp in mediating GAL1 effects. Collectively, our findings suggest that GAL1 confers chemoresistance in HCC through mechanisms involving modulation of P-gp, thus emphasizing the role of this lectin as a potential therapeutic target in HCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism
  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / pathology
  • Cell Line, Tumor
  • Doxorubicin / pharmacology
  • Doxorubicin / therapeutic use
  • Drug Resistance, Neoplasm
  • Galectin 1* / genetics
  • Galectin 1* / metabolism
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / pathology
  • Sorafenib / pharmacology
  • Tumor Microenvironment

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Galectin 1
  • LGALS1 protein, human
  • Doxorubicin
  • Sorafenib