Cryo-EM structure of translesion DNA synthesis polymerase ζ with a base pair mismatch

Nat Commun. 2022 Feb 25;13(1):1050. doi: 10.1038/s41467-022-28644-7.

Abstract

The B-family multi-subunit DNA polymerase ζ (Polζ) is important for translesion DNA synthesis (TLS) during replication, due to its ability to extend synthesis past nucleotides opposite DNA lesions and mismatched base pairs. We present a cryo-EM structure of Saccharomyces cerevisiae Polζ with an A:C mismatch at the primer terminus. The structure shows how the Polζ active site responds to the mismatched duplex DNA distortion, including the loosening of key protein-DNA interactions and a fingers domain in an "open" conformation, while the incoming dCTP is still able to bind for the extension reaction. The structure of the mismatched DNA-Polζ ternary complex reveals insights into mechanisms that either stall or favor continued DNA synthesis in eukaryotes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Pair Mismatch*
  • Cryoelectron Microscopy
  • DNA
  • DNA Damage
  • DNA Replication
  • DNA-Directed DNA Polymerase / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • DNA
  • DNA polymerase zeta
  • DNA-Directed DNA Polymerase