Multiview Feature Fusion Representation for Interictal Epileptiform Spikes Detection

Int J Neural Syst. 2022 Jul;32(7):2250014. doi: 10.1142/S0129065722500149. Epub 2022 Mar 10.

Abstract

Interictal epileptiform spikes (IES) of scalp electroencephalogram (EEG) signals have a strong relation with the epileptogenic region. Since IES are highly unlikely to be detected in scalp EEG signals, the primary diagnosis depends heavily on the visual evaluation of IES. However, visual inspection of EEG signals, the standard IES detection procedure is time-consuming, highly subjective, and error-prone. Furthermore, the highly complex, nonlinear, and nonstationary characteristics of EEG signals lead to the incomplete representation of EEG signals in existing computer-aided methods and consequently unsatisfactory detection performance. Therefore, a novel multiview feature fusion representation (MVFFR) method was developed and combined with a robustness classifier to detect EEG signals with/without IES. MVFFR comprises two steps: First, temporal, frequency, temporal-frequency, spatial, and nonlinear domain features are transformed by the IES to express the latent information effectively. Second, the unsupervised infinite feature-selection method determines the most distinct feature fusion representations. Experimental results using a balanced dataset of six patients showed that MVFFR achieved the optimal detection performance (accuracy: 89.27%, sensitivity: 89.01%, specificity: 89.54%, and precision: 89.82%) compared with other feature ranking methods, and the MVFFR-related method were complementary and indispensable. Additionally, in an independent test, MVFFR maintained excellent generalization capacity with a false detection rate per minute of 0.15 on the unbalanced dataset of one patient.

Keywords: Interictal epileptiform spikes (IES); electroencephalogram (EEG); multiview feature fusion representations (MVFFR).

MeSH terms

  • Electroencephalography / methods
  • Epilepsy* / diagnosis
  • Humans
  • Signal Processing, Computer-Assisted*