Higher-order transition state approximation

J Chem Phys. 2022 Mar 21;156(11):114112. doi: 10.1063/5.0086173.

Abstract

We generalize Slater's transition state concept by deriving systematic higher-order transition state approximations. Numerical validation is performed by the calculation of transition energies for various excitations, including core, valence, and charge-transfer excitations, at Hartree-Fock and Kohn-Sham density functional theory levels. All higher-order transition state approximations introduced in this study accurately reproduce the results from delta self-consistent-field calculations. In particular, we demonstrate that the third-order generalized transition state (GTS3) approximation is a promising alternative to the original, owing to a good balance between the accuracy and computational cost. We also demonstrate that accurate and reliable results can be obtained with a low computational cost by combining the GTS3 approximation with the transition potential scheme.