Automated Sequential Injection-Capillary Electrophoresis for Dried Blood Spot Analysis: A Proof-of-Concept Study

Anal Chem. 2022 Apr 5;94(13):5301-5309. doi: 10.1021/acs.analchem.1c05130. Epub 2022 Mar 23.

Abstract

A hyphenated analytical platform that enables fully automated analyses of dried blood spots (DBSs) is proposed by the at-line coupling of sequential injection (SI) to capillary electrophoresis (CE). The SI system, exploited herein for the first time for unattended DBS handling, serves as the "front end" mesofluidic platform for facilitating exhaustive elution of the entire DBS by flow programming. The DBS eluates are thus free from hematocrit and nonhomogeneity biases. The SI pump transfers the resulting DBS eluates into CE sample vials through an internal port of the CE instrument and homogenizes the eluates, whereupon the eluted blood compounds are automatically injected, separated, and quantified by the CE instrument. The SI and CE are commercially available off-the-shelf instruments and are interconnected through standard nuts, ferrules, and tubing without additional instrumental adjustments. They are controlled by dedicated software and are synchronized for a fully autonomous operation. The direct determination of endogenous (potassium and sodium) and exogenous (lithium as a model drug) inorganic cations in DBS samples has been used for the proof-of-concept demonstration. The hyphenated SI-CE platform provides excellent precision of the analytical method with relative standard deviation (RSD) values of peak areas below 1.5 and 3.5% for intraday and interday analyses, respectively, of the endogenous concentrations of the two inorganic cations. For the determination of lithium, calibration is linear in a typical clinical range of the drug (R2 better than 0.9993 for 2-20 mg/L), RSD values of peak areas are below 4.5% (in the entire calibration range), the limit of detection (0.4 mg/L) and the limit of quantification (1.3 mg/L) are well below the drug's minimum therapeutic concentration (4 mg/L), and total analysis time is shorter than 5 min. The SI-CE platform reflects the actual trends in the automation of analytical methods, offers rapid and highly flexible DBS elution/analysis processes, and might thus provide a general solution to modern clinical analysis as it can be applied to a broad range of analytes and dried biological materials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Automation
  • Cations
  • Dried Blood Spot Testing / methods
  • Electrophoresis, Capillary* / methods
  • Hematocrit
  • Potassium*

Substances

  • Cations
  • Potassium