Proteomics and phosphoproteomics datasets of a muscle-specific STIM1 loss-of-function mouse model

Data Brief. 2022 Mar 11:42:108051. doi: 10.1016/j.dib.2022.108051. eCollection 2022 Jun.

Abstract

STIM1 is an ER/SR transmembrane protein that interacts with ORAI1 to activate store operated Ca2+ entry (SOCE) upon ER/SR depletion of calcium. Normally highly expressed in skeletal muscle, STIM1 deficiency causes significant changes to mitochondrial ultrastructure that do not occur with loss of ORAI1 or other components of SOCE. The datasets in this article are from large-scale proteomics and phosphoproteomics experiments in an inducible mouse model of skeletal muscle-specific STIM1 knock out (KO). These data reveal statistically significant changes in the relative abundance of specific proteins and sites of protein phosphorylation in STIM1 KO gastrocnemius. Protein samples from five biological replicates of each condition (+/- STIM1) were enzymatically digested, the resulting peptides labeled with tandem mass tag (TMT) reagents, mixed, and fractionated. Phosphopeptides were enriched and a small amount of each input retained for protein abundance analysis. All phosphopeptide and input fractions were analyzed by nano LC-MS/MS on a Q Exactive Plus Orbitrap mass spectrometer, searched with Proteome Discoverer software, and processed with in-house R-scripts for data normalization and statistical analysis. Article published in Molecular Metabolism [1].

Keywords: Calcium homeostasis; Isobaric tags; Mass spectrometry; PTM normalization; Protein abundance; Protein phosphorylation; R script.