SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice

Geroscience. 2022 Jun;44(3):1657-1675. doi: 10.1007/s11357-022-00563-x. Epub 2022 Apr 15.

Abstract

Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.

Keywords: Aging; Arterial stiffness; Endothelial function; Oxidative stress; SGLT2.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Actins / metabolism
  • Aged
  • Animals
  • Diabetes Mellitus, Type 2* / drug therapy
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Oxidative Stress
  • Pulse Wave Analysis
  • Sodium-Glucose Transporter 2 / metabolism
  • Sodium-Glucose Transporter 2 / therapeutic use
  • Sodium-Glucose Transporter 2 Inhibitors* / pharmacology
  • Sodium-Glucose Transporter 2 Inhibitors* / therapeutic use
  • Vascular Diseases*

Substances

  • Actins
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors