In Vitro Models of Bone Marrow Remodelling and Immune Dysfunction in Space: Present State and Future Directions

Biomedicines. 2022 Mar 24;10(4):766. doi: 10.3390/biomedicines10040766.

Abstract

Spaceflight affects the body on every level. Reports on astronaut health identify bone marrow remodelling and dysfunction of the innate immune system as significant health risks of long-term habitation in space. Microgravity-induced alterations of the bone marrow induce physical changes to the bone marrow stem cell niche. Downstream effects on innate immunity are expected due to impaired hematopoiesis and myelopoiesis. To date, few studies have investigated these effects in real microgravity and the sparsely available literature often reports contrasting results. This emphasizes a need for the development of physiologically relevant in vitro models of the bone marrow stem cell niche, capable of delivering appropriate sample sizes for robust statistics. Here, we review recent findings on the impact of spaceflight conditions on innate immunity in in vitro and animal models and discusses the latest in vitro models of the bone marrow stem cell niche and their potential translatability to gravitational biology research.

Keywords: 3D cell culture; bone marrow niche; hematopoiesis; hematopoietic progenitor cells; innate immunity; mesenchymal stem cells; microgravity; myelopoiesis.

Publication types

  • Review