Temperature-Induced Structure Transformation from Co0.85Se to Orthorhombic Phase CoSe2 Realizing Enhanced Hydrogen Evolution Catalysis

ACS Omega. 2022 Apr 28;7(18):15901-15908. doi: 10.1021/acsomega.2c01020. eCollection 2022 May 10.

Abstract

Transition-metal chalcogenides (TMC) have been widely studied as active electrocatalysts toward the hydrogen evolution reaction due to their suitable d-electron configuration and relatively high electrical conductivity. Herein, we develop a feasible method to synthesize an orthorhombic phase of CoSe2 (o-CoSe2) from the regeneration of Co0.85Se, where the temperature plays a key role in controlling the structure transformation. To the best of our knowledge, this is the first report about this synthetic route for o-CoSe2. The resulting o-CoSe2 catalysts exhibit enhanced hydrogen evolution reaction performance with an overpotential of 220 mV to reach 10 mA cm-2 in 1.0 M KOH. Density functional theory calculations further reveal that the change in the Gibbs free energy of hydrogen, water adsorption energy, and the downshifted d-band center make o-CoSe2 more suitable for accelerating the HER process.