Evidence for Low-Valent Electronic Configurations in Iron-Sulfur Clusters

J Am Chem Soc. 2022 May 25;144(20):9066-9073. doi: 10.1021/jacs.2c01872. Epub 2022 May 16.

Abstract

Although biological iron-sulfur (Fe-S) clusters perform some of the most difficult redox reactions in nature, they are thought to be composed exclusively of Fe2+ and Fe3+ ions, as well as mixed-valent pairs with average oxidation states of Fe2.5+. We herein show that Fe-S clusters formally composed of these valences can access a wider range of electronic configurations─in particular, those featuring low-valent Fe1+ centers. We demonstrate that CO binding to a synthetic [Fe4S4]0 cluster supported by N-heterocyclic carbene ligands induces the generation of Fe1+ centers via intracluster electron transfer, wherein a neighboring pair of Fe2+ sites reduces the CO-bound site to a low-valent Fe1+ state. Similarly, CO binding to an [Fe4S4]+ cluster induces electron delocalization with a neighboring Fe site to form a mixed-valent Fe1.5+Fe2.5+ pair in which the CO-bound site adopts partial low-valent character. These low-valent configurations engender remarkable C-O bond activation without having to traverse highly negative and physiologically inaccessible [Fe4S4]0/[Fe4S4]- redox couples.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electronics
  • Iron* / chemistry
  • Iron-Sulfur Proteins* / chemistry
  • Oxidation-Reduction
  • Sulfur / chemistry

Substances

  • Iron-Sulfur Proteins
  • Sulfur
  • Iron