Development of Mild Chemical Catalysis Conditions for m1A-to-m6A Rearrangement on RNA

ACS Chem Biol. 2022 Jun 17;17(6):1334-1342. doi: 10.1021/acschembio.2c00178. Epub 2022 May 20.

Abstract

The conversion of N1-methyladenosine (m1A) to N6-methyladenosine (m6A) on RNA is an important step for both allowing efficient reverse transcription read-though for sequencing analysis and mapping modifications in the transcriptome. Enzymatic transformation is often used, but the efficiency of the removal can depend on local sequence context. Chemical conversion through the application of the Dimroth rearrangement, in which m1A rearranges into m6A under heat and alkaline conditions, is an alternative, but the required alkaline conditions result in significant RNA degradation by hydrolysis of the phosphodiester backbone. Here, we report novel, mild pH conditions that catalyze m1A-to-m6A arrangement using 4-nitrothiophenol as a catalyst. We demonstrate the efficient rearrangement in mononucleosides, synthetic RNA oligonucleotides, and RNAs isolated from human cell lines, thereby validating a new approach for converting m1A-to-m6A in RNA samples for sequencing analyses.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Catalysis
  • Humans
  • Oligonucleotides*
  • RNA* / metabolism
  • Transcriptome

Substances

  • Oligonucleotides
  • RNA