MOSAICING OF DYNAMIC MESENTERY VIDEO WITH GRADIENT BLENDING

Proc Int Conf Image Proc. 2020 Oct:2020:563-567. doi: 10.1109/icip40778.2020.9191045. Epub 2020 Sep 30.

Abstract

In biomedical imaging using video microscopy, understanding large tissue structures at cellular and finer resolution poses many image acquisition challenges including limited field-of-view and tissue dynamics during imaging. Automated mosaicing or stitching of live tissue video microscopy enables the visualization and analysis of subtle morphological structures and large scale vessel network architecture in tissues like the mesentery. But mosacing can be challenging if there are deformable, motion-blurred, textureless, feature-poor frames. Feature-based methods perform poorly in such cases for the lack of distinctive keypoints. Standard single block correlation matching strategies might not provide robust registration due to deformable content. In addition, the panorama suffers if there is motion blur present in a sequence. To handle these challenges, we propose a novel algorithm, Deformable Normalized Cross Correlation (DNCC) image matching with RANSAC to establish robust registration. Besides, to produce seamless panorama from motion-blurred frames we present gradient blending method based on image edge information. The DNCC algorithm is applied on Frog Mesentery sequences. Our result is compared with PSS/AutoStitch [1, 2] to establish the efficiency and robustness of the proposed DNCC method.

Keywords: Biomedical; Cross Correlation; Gradient blending; Mesentery; Mosaicing; Registration.