Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex

J Am Chem Soc. 2022 Jul 20;144(28):12690-12697. doi: 10.1021/jacs.2c02271. Epub 2022 Jul 6.

Abstract

Multi-module dCas9 engineering systems have been developed for controllable transcriptional manipulation such as chemical- or light-induced systems. However, there is still a need for a separate module that can be used for internal control over the CRISPR-dCas9 system. Here, we describe a multi-module CRISPR-dCas9 system in which a separate structured RNA was applied as a programmable component that could control dCas9-based gene regulation and achieved a higher activation efficiency than dCas9-VPR that is traditionally used. By introducing a microRNA sensor, we generated a dCas9-based transcriptional regulation platform that responded to endogenous microRNAs and allowed controllable activation of endogenous genes. Moreover, we applied the platform to selectively identify HCT116 cells in a cell mixture. This work provides a flexible platform for efficient and controllable gene regulation based on CRISPR-dCas9.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • Clustered Regularly Interspaced Short Palindromic Repeats*
  • RNA / genetics
  • Transcriptional Activation

Substances

  • RNA