A Highly Sensitive Method to Efficiently Profile the Histone Modifications of FFPE Samples

Bio Protoc. 2022 May 20;12(10):e4418. doi: 10.21769/BioProtoc.4418.

Abstract

The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. Nevertheless, it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissue of interest are limited. Here, we present F FPE tissue with a ntibody-guided c hromatin t agmentation with sequencing (FACT-seq), highly sensitive method to efficiently profile histone modifications in FFPE tissue by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We showed a very small piece of FFPE tissue section containing ~4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. In archived FFPE human colorectal and human glioblastoma cancer tissue, H3K27ac FACT-seq revealed disease specific super enhancers. In summary, FACT-seq allows researchers to decode histone modifications like H3K27ac and H3K27me3 in archival FFPE tissues with high sensitivity, thus allowing us to understand epigenetic regulation. Graphical abstract: ( i ) FFPE tissue section; ( ii ) Isolated nuclei; ( iii ) Primary antibody, secondary antibody and T7-pA-Tn5 bind to targets; ( iv ) DNA purification; ( v ) In vitro transcription and sequencing library preparation; ( vi ) Sequencing.

Keywords: FACT-seq; FFPE tissue; High sensitivity; Histone modifications; T7-pA-Tn5 transposase.